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The problem of substant ial izat ion of sign sequences arises 
when  we wish to de termine  the signs of the s t ruc ture  
factors of a cen t rosymmetr ica l  crystal  by  means  of the  
trial  analysis m e t h o d  (Woolfson, 1954). Some of the signs 
m a y  arbi t rar i ly  be assumed to be positive (Lipson & 
Cochran, 1953), and  I shall suppose tha t  n '  signs remain  
to be determined,  and wri te  n = n ' +  1. Woolfson was 
interes ted in the  case n = 8 .  l i e  exhibi ted a set of 16 
heptuples  (or 7-sequences) such tha t  each of the  128 
possible heptuples  differs from one of the  sixteen in at  
mos t  one sign. Good (1955) analysed the ma themat i ca l  
basis of the  m e t h o d  and showed tha t  it could be genera- 
lised to any  value of n tha t  is a power of 2. I have  since 
discovered t ha t  the ma themat i c s  of the me thod  is the  
same as t ha t  used in t t a m m i n g ' s  error-correcting code 
(Shannon, 1948; Golay, 1949). This code was in t roduced 
for quite  different purposes, namely  for the reliabili ty of 
b inary  communicat ion .  Much of the later  work on error- 
correct ing codes should also have  applicat ion to crystallo- 
graphy.  

The set of sixteen heptuples  referred to above m a y  be 
described as a 1-substantialization of the 128 possible 
heptuples,  since one incorrect  sign is permi t ted .  I t  is 
perfect ly economical  in the sense t ha t  each of the 128 
possible heptuples  is ' represented '  by  exact ly  one m e m b e r  
of the  substantial izing set. I t  is only for special values 
of r and  n '  t ha t  a perfect ly economical  r-substantial iza- 
t ion of all n ' - tuples  exists. A necessary condit ion is t ha t  

should be a power  of 2; since this is the  n u m b e r  of 
n ' - tuples  represented by one n'-tuple, and  mus t  therefore 
divide 2 n'. W h e n  a perfect ly economical  substantial iza- 
t ion does not  exist we m a y  have  to be satisfied wi th  a 
fairly economical  one. 

I t  will no t  always be possible to guess in advance  
w h a t  value of r should be used. In  such circumstances 
it  seems reasonable to s tar t  wi th  a value of r not  much  
less than  ½n and  to decrease r gradual ly  unt i l  success is 
achieved. (The larger values of r provide less work, bu t  
less chance of success.) 

An a l ternat ive  method,  which is logically simpler and  
therefore probably  easier to apply, is to t ry  out  the n'. 
tuples in r andom order. If  the t ime of generat ion of the 
n ' - tuples  is ignored this r andom me thod  m a y  be expected 
to take  exact ly  twice as long as a perfect ly economical  
substant ia l izat ion using the largest value of r t ha t  would 
lead to success. Since this value of r is no t  known in 
advance,  ' randomised substant ial izat ion '  is ra ther  be t te r  
t han  this es t imate  suggests. (This factor  of 2 is easy to 
demons t ra te  rigorously; it arises pr imar i ly  from the fact 
t ha t  the systemat ic  me thod  would on the average succeed 
af ter  half  the possibilities had  been tried.) 

B u t  it  is be t te r  to run  th rough  the n ' - tuples  in a 
pseudorandom order, i.e. an order  t ha t  looks r andom if 
we do not  lmow the me thod  of generat ion.  I shall describe 
some pseudorandom orders such tha t  no n ' - tuple  is 

repeated.  Owing to this avoidance of repet i t ion we gain 
back the  factor of 2 tha t  would be lost by the  use of a 
r andom order of generat ion of the  n '- tuples.  

If  we knew in advance  t ha t  we had  to have  r = 0, i.e. 
t ha t  substant ia l izat ion was going to gain nothing,  then  
we migh t  as well run th rough the  n ' - tuples  in the na tu ra l  
'd ic t ionary '  order. The fact t ha t  most  pairs of ad j acen t  
n ' - tuples  would s t rongly resemble one ano ther  would  
then  not  ma t te r .  Bu t  if we do no t  know tha t  r = 0  is 
required then this naive me thod  could be expected to be 
very  uneconomical .  

The pseudorandom me thod  has the  fur ther  advan tage  
over the r andom me thod  tha t  the workings can be more  
convenient ly  checked and described, and  if we stop a 
piece of work  in the  middle  we can easily r e m e m b e r  
where  to begin again later.  These advantages  are famil iar  
when  using pseudorandom numbers  in Monte Carlo 
methods  of calculation, outside crysta l lography.  

Of the various methods  of genera t ing pseudorandom 
binary  numbers  there  is one tha t  has a special advan tage  
for the  present  purpose, namely  t h a t  it  is exhaustive. 
B y  this I mean  t ha t  every n- tuple  is reached sooner or 
la ter  (without  repeti t ion),  provided t ha t  we ident i fy  
each n- tuple  with its 'ones-complement ' .  (I a m  th ink ing  
of every  positive sigm as represented by a 1 and  every  
negat ive  sign by  a 0, so t ha t  each n- tuple  m a y  be inter- 
pre ted  as a b inary  integer.  The ones-complement  of an  
n- tuple  is then  obta ined by changing each 1 into a 0 
and  each 0 into a 1.) For  some values of n we can achieve 
our a im wi th  the help of Merserme primes, i.e. p r ime 
numbers  t ha t  are i less t han  a power  of 2. (The use of 
Mersenne primes for the  product ion  of p seudorandom 
numbers  was suggested by  Lehmer  (1951).) 

The only values of p less t han  500, for which 2 P -  1 is 
a pr ime n u m b e r  are (Lehmer,  1953) 

2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, and  127. 

Suppose t ha t  n is equal  to one of these values of p, 
so t ha t  2 n - 1 is a pr ime number ,  say q. Le t  g be a primi- 
t ive root  of q, i.e. a n u m b e r  whose powers run  th rough  
all the residues of q except  0. (For the  terminology see 
the  Appendix.)  Then  take,  as our pseudorandom order,  
no t  g, g2, ga . . . . .  bu t  instead g2, g4, g6 . . . . .  reduced rood 
q and expressed in the  b inary  nota t ion .  I say t ha t  this 
will provide an exhaust ive  pseudorandomiza t ion  of the  
n-tuples~ if each n- tuple  i8 ident if ied wi th  its ones- 
complement ,  except  t ha t  the all-zero n- tuple  is omi t ted .  
(I t  can be appended  at  the  beginning if desired.) I n  order  
to prove this assertion it is sufficient to observe t h a t  the  
ones-complement  of an n-tuple,  regarded as a b inary  
number ,  is s imply minus  tha t  number  modulo  q, and  t h a t  
- 1  is never  a quadra t ic  residue of a pr ime of the  form 
4m+ 3, so the me thod  of generat ion cannot  produce  an  
n- tuple  and its ones-complement .  (I am ignoring the  
trivial  case p = 2.) 

Nex t  suppose t ha t  n is 1 plus any  of the  above values 
of p. Then  we m a y  fix one of the  signs of the  n- tuple ,  
select a pr imi t ive  root  of 2 n ' -  1, and  take  all powers of 
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this pr imit ive root  modulo 2 n ' -  1. We have  thus coped 
wi th  the  following values of n: 2, 3, 4, 5, 6, 7, 8, 13, 14, 
17, 18, 19, 20, 31, 32, . . . .  

Other  values of n may  be dealt  with  in a slightly less 
elegant  manner  tha t  will be exemplif ied by  the  case 
n = 10. Let  the first three  binary digits, regarded as a 
binary number ,  run periodically through the sequence 
4, 5, 6, 7, 4, 5, 6, 7, etc., and  let the last seven binary 
digits, also regarded as a binary number ,  run periodically 
through the  sequence 0, g, g~, g3 . . . . .  1, 0, g, g2, g3 . . . . .  
Since 4 is pr ime to 2 ~ -  1, the  length of the  entire period 
is 29 - 4 ,  the only omi t ted  10-tuples, beginning with a 1, 
being 

1 0 0 1 1 1 1 1 1 1  
1 0 1 1 1 1 1 1 1 1  
1 1 0 1 1 1 1 1 1 1  
1 1 1 1 1 1 1 1 1 1 .  

These four 10-tuples m a y  be appended  if desired. 
This m e t h o d  should be adequate  to deal wi th  all 

practical  values of n not  covered by the  above list. 
I do not  know whether  a list of pr imit ive  roots of 

Mersenne primes is already available. If  not,  it  would 
be very easy to obtain t hem with the aid of an electronic 
computer ,  up to p - -31 .  

For  application of similar methods  for non-centre-  
symmetr ical  crystals it m a y  be of value to know more 
about  the  pr ime factors of numbers  of the  form 3 m -  1, 
say. I do no t  know whether  this problem has interested 
number  theoreticians. 

A P P E N D I X  

T e r m i n o l o g y  of the theory  of n u m b e r s  

For  the  convenience of readers who are not  familiar wi th  
the  e lementary  theory  of numbers  I here list all the  
re levant  terminology and other  facts. 

A pr ime number  is an integer, q(q ~ 2), not  divisible 
by  any other  integer except  1. Two integers are said to 
be equal or congruent  modulo  or rood q and to belong 
to the  same residue class or residue of q if they  differ by  
a mult iple  of q. Each  residue class of q can clearly be 
represented by one of the  numbers  0, 1, 2 . . . . .  q -  1. 

According to Fermat ' s  ' l i t t le theorem' ,  if q is pr ime 
and a is not  a mult iple  of q, then  aq-1 is congruent  to 1 
rood q. For  example,  3 6 -  1 is a mult iple  of 7. 

A pr imit ive  root of a pr ime number  q is a number  g 
such tha t  g, ge, ga . . . . .  gq-1 runs through all residues of 
q except  0. Eve ry  pr ime number  has at  least one primi- 
t ive root. 

A quadrat ic  residue of a prime, q, is a residue tha t  is 
congruent  to a square of an integer. The product  of two 
quadrat ic  residues is clearly a quadrat ic  residue. The 
binary representat ion of an integer N is exemplif ied by 
13 = 1101, which means  1-2a+ 1.22÷ 0.21÷ 1.2 °, jus t  as in 
the decimal representat ion 13 means 1.101÷ 3-100 . Most 
modern  electronic computers  work internal ly with binary 
representations.  

I am indebted  to the Admira l ty  for permission to 
publish this paper. 
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International Union of Crystallography 
1. The Execut ive  Commit tee  very much  regrets to 

announce tha t  the  Edi tor  of Acta Crystallographica, Prof. 
P. P. Ewald,  has requested to be released from his 
responsibilities by the  end of the  current  year. The 
quest ion of his succession was given the  most  thorough 
consideration before and at  the  meet ing  in Leningrad.  
The Execut ive  Commit tee  then  decided, in accordance 
wi th  Statutes 5.4 and 6.1, to appoint  the present  Edi tor  
of Structure Reports, Prof. A. J.  C. Wilson, as Edi tor  of 
Acta Crystallographica, and to appoint  Dr W. B. Pearson 
as successor to Prof. Wilson as Edi tor  of Structure Reports. 
Both  appoin tments  will take  effect as from 1 Janua ry  
1960. 

2. Another  impor tan t  decision taken  by  the  Execut ive  
Commit tee  at  its meet ing  in Leningrad was a readjust-  

m e n t  of the  prices of Volumes 1-6 of Acta Crystallo- 
graphica, and of Volumes 9- r3  of Structure Reports, 
together  wi th  the  in t roduct ion of reduced personal prices 
for this la t ter  publicat ion for bona-fide crystallographers 
in countries adhering to the  Union.  As from 1 J anua ry  
1960 the prices will be as follow: 

A c t a  Crysta l lographica  
Volumes 1-4: 
Regular  price per volume D.Cr. 100 (£5 or $14) 
Reduced  price for individuals D.Cr. 60 (£3 or $ 9) 

As  from Volume 5 : 
Regular  price per volume 
Reduced  price for individuals 

D.Cr. 180 (£9 or $25) 
D.Cr. 100 (£5 or $14) 


