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SHORT COMMUNICATIONS

Randomised and pseudorandomised substantialization of sign sequences. By I.J. Goop, Admi-
ralty Research Laboratory, Teddington, Middlesex, England.

(Received 8 May 1959)

The problem of substantialization of sign sequences arises
when we wish to determine the signs of the structure
factors of a centrosymmetrical crystal by means of the
trial analysis method (Woolfson, 1954). Some of the signs
may arbitrarily be assumed to be positive (Lipson &
Cochran, 1953), and I shall suppose that n’ signs remain
to be determined, and write n=n'+ 1. Woolfson was
interested in the case n=8. He exhibited a set of 16
heptuples (or 7-sequences) such that each of the 128
possible heptuples differs from one of the sixteen in at
most one sign. Good (1955) analysed the mathematical
basis of the method and showed that it could be genera-
lised to any value of n that is a power of 2. I have since
discovered that the mathematics of the method is the
same as that used in Hamming’s error-correcting code
(Shannon, 1948; Golay, 1949). This code was introduced
for quite different purposes, namely for the reliability of
binary communication. Much of the later work on error-
correcting codes should also have application to crystallo-
graphy.

The set of sixteen heptuples referred to above may be
described as a 1-substantialization of the 128 possible
heptuples, since one incorrect sign is permitted. It is
perfectly economical in the sense that each of the 128
possible heptuples is ‘represented’ by exactly one member
of the substantializing set. It is only for special values
of r and n’ that a perfectly economical r-substantializa-
tion of all n’-tuples exists. A necessary condition is that
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should be a power of 2; since this is the number of
n’-tuples represented by one n’-tuple, and must therefore
divide 2¥'. When a perfectly economical substantializa-
tion does not exist we may have to be satisfied with a
fairly economical one.

It will not always be possible to guess in advance
what value of » should be used. In such circumstances
it seems reasonable to start with a value of r not much
less than {n and to decrease r gradually until success is
achieved. (The larger values of r provide less work, but
less chance of success.)

An alternative method, which is logically simpler and
therefore probably easier to apply, is to try out the n’-
tuples in random order. If the time of generation of the
n/-tuples is ignored this random method may be expected

to take exactly twice as long as a perfectly economical
substantialization using the largest value of  that would
lead to success. Since this value of r is not known in
advance, ‘randomised substantialization’ is rather better
than this estimate suggests. (This factor of 2 is easy to
demonstrate rigorously; it arises primarily from the fact
that the systematic method would on the average succeed
after half the possibilities had been tried.)

But it is better to run through the n’-tuples in a
pseudorandom order, i.e. an order that looks random if
we do not know the method of generation. I shall describe
some pseudorandom orders such that no »’-tuple is

repeated. Owing to this avoidance of repetition we gain
back the factor of 2 that would be lost by the use of a
random order of gencration of the n’-tuples.

If we knew in advance that we had to have r=0, i.e.
that substantialization was going to gain nothing, then
we might as well run through the n’-tuples in the natural
‘dictionary’ order. The fact that most pairs of adjacent
n’-tuples would strongly resemble one another would
then not matter. But if we do not know that =0 is
required then this naive method could be expected to be
very uneconomical.

The pseudorandom method has the further advantage
over the random method that the workings can be more
conveniently checked and described, and if we stop a
piece of work in the middle we can easily remember
where to begin again later. These advantages are familiar
when using pseudorandom numbers in Monte Carlo
methods of calculation, outside crystallography.

Of the various methods of generating pseudorandom
binary numbers there is one that has a special advantage
for the present purpose, namely that it is exhaustive.
By this I mean that every n-tuple is reached sooner or
later (without repetition), provided that we identify
each n-tuple with its ‘ones-complement’. (I am thinking
of every positive sign as represented by a 1 and every
negative sign by a 0, so that each n-tuple may be inter-
preted as a binary integer. The ones-complement of an
n-tuple is then obtained by changing each 1 into a 0
and each 0 into a 1.) For some values of n we can achieve
our aim with the help of Mersenne primes, i.e. prime
numbers that are 1 less than a power of 2. (The use of
Mersenne primes for the production of pseudorandom
numbers was suggested by Lehmer (1951).)

The only values of p less than 500, for which 2P —1 is
a prime number are (Lehmer, 1953)

2,3,5,7,13,17, 19, 31, 61, 89, 107, and 127 .

Suppose that n is equal to one of these values of p,
so that 2" —1 is a prime number, say g. Let g be a primi-
tive root of ¢, i.e. a number whose powers run through
all the residues of ¢ except 0. (For the terminology see
the Appendix.) Then take, as our pseudorandom order,
not g, g%, g, ..., but instead ¢2, ¢4, ¢5, ..., reduced mod
¢ and expressed in the binary notation. I say that this
will provide an exhaustive pseudorandomization of the
n-tuples, if each n-tuple is identified with its ones-
complement, except that the all-zero n-tuple is omitted.
(It can be appended at the beginning if desired.) In order
to prove this assertion it is sufficient to observe that the
ones-complement of an n-tuple, regarded as a binary
number, is simply minus that number modulo g, and that
—1 is never a quadratic residue of a prime of the form
4m+ 3, so the method of generation cannot produce an
n-tuple and its ones-complement. (I am ignoring the
trivial case p =2.)

Next suppose that n is 1 plus any of the above values
of p. Then we may fix one of the signs of the n-tuple,
select a primitive root of 2% —1, and take all powers of
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this primitive root modulo 2% —1. We have thus coped
with the following values of n: 2, 3, 4, 5, 6, 7, 8, 13, 14,
17, 18, 19, 20, 31, 32, ....

Other values of » may be dealt with in a slightly less
elegant manner that will be exemplified by the case
n=10. Let the first three binary digits, regarded as a
binary number, run periodically through the sequence
4, 5, 6, 7, 4, 5, 6, 7, etc., and let the last seven binary
digits, also regarded as a binary number, run periodically
through the sequence 0,¢,9% 9% ...,1,0,9,9% 4% ....
Since 4 is prime to 27 —1, the length of the entire period
is 29 —4, the only omitted 10-tuples, beginning with a 1,
being

1001111111
1011111111
1101111111
1111111111,

These four 10-tuples may be appended if desired.

This method should be adequate to deal with all
practical values of » not covered by the above list.

I do not know whether a list of primitive roots of
Mersenne primes is already available. If not, it would
be very easy to obtain them with the aid of an electronic
computer, up to p=3I1.

For application of similar methods for non-centro-
symmetrical crystals it may be of value to know more
about the prime factors of numbers of the form 3™ —1,
say. I do not know whether this problem has interested
number theoreticians.

APPENDIX
Terminology of the theory of numbers

For the convenience of readers who are not familiar with
the elementary theory of numbers I here list all the
relevant terminology and other facts.
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A prime number is an integer, g(g > 2), not divisible
by any other integer except 1. Two integers are said to
be equal or congruent modulo or mod ¢ and to belong
to the same residue class or residue of ¢ if they differ by
a multiple of ¢. Each residue class of ¢ can clearly be
represented by one of the numbers 0,1, 2, ...,qg—1.

According to Fermat’s ‘little theorem’, if ¢ is prime
and a is not a multiple of g, then a?~! is congruent to 1
mod ¢g. For example, 3¢ —1 is a multiple of 7.

A primitive root of a prime number ¢ is a number g
such that g, ¢2, g3, . .., g7~ ! runs through all residues of
g except 0. Every prime number has at least one primi-
tive root.

A quadratic residue of a prime, g, is a residue that is
congruent to a square of an integer. The product of two
quadratic residues is clearly a quadratic residue. The
binary representation of an integer N is exemplified by
13 =1101, which means 1-28+ 1-224 0-214 1-2°, just as in
the decimal representation 13 means 1-101+ 3-10° Most
modern electronic computers work internally with binary
representations.

I am indebted to the Admiralty for permission to
publish this paper.
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Notes and News

Announcements and other items of crystallographic interest will be published under this heading at the discretion of the
Editorial Board. Copy should be sent direct to the Editor (P. P. Ewald, Polytechnic Institute of Brooklyn, 333 Jay
Street, Brooklyn 1, N.Y., U.S. A.) or to the Technical Editor (R. W. Asmussen, Chemical Laboratory B of the Technical
University of Denmark, Selvgade 83, Copenhagen K, Denmark)

International Union of Crystallography

1. The Executive Committee very much regrets to
announce that the Editor of Acta Crystallographica, Prof.
P. P. Ewald, has requested to be released from his
responsibilities by the end of the current year. The
question of his succession was given the most thorough
consideration before and at the meeting in Leningrad.
The Executive Committee then decided, in accordance
with Statutes 54 and 6-1, to appoint the present Editor
of Structure Reports, Prof. A.J.C. Wilson, as Editor of
Acta Crystallographica, and to appoint Dr W. B. Pearson
as successor to Prof. Wilson as Editor of Structure Reports.
Both appointments will take effect as from 1 January
1960.

2. Another important decision taken by the Executive
Committee at its meeting in Leningrad was a readjust-

ment of the prices of Volumes 1-6 of Acta Crystallo-
graphica, and of Volumes 9-13 of Structure Reports,
together with the introduction of reduced personal prices
for this latter publication for bona-fide crystallographers
in countries adhering to the Union. As from 1 January
1960 the prices will be as follow:

Acta Crystallographica
Volumes 1-4:
Regular price per volume
Reduced price for individuals

D.Cr. 100 (£5 or $14)
D.Cr. 60 (£3 or§ 9)

As from Volume 5:

Regular price per volume
Reduced price for individuals

D.Cr. 180 (£9 or $25)
D.Cr. 100 (£5 or §14)



